Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

P. R. Seshadri, ${ }^{\text {a }}$

D. Velmurugan, ${ }^{\mathrm{a} *}$
T. Josephrajan, ${ }^{\text {b }}$
V. T. Ramakrishnan ${ }^{\text {b }}$ and

M. J. Kim ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and
${ }^{\text {c }}$ Department of Physics, Soonchunbyang University, PO Box 97, Asan, Chugnam 336 600, South Korea

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.059$
$w R$ factor $=0.180$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

10-[2-(4-Hydroxyphenyl)ethyl]-3,3,6,6,9-pentamethyl-3,4,6,7,9,10-hexahydro-acridine-1,8(2H,5H)-dione

The central dihydropyridine ring in the title compound, $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{3}$, adopts a boat conformation, while the outer rings adopt sofa conformations. The packing is stabilized by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Acridine derivatives exhibit a wide spectrum of biological activities, such as antibacterial (Acheson, 1956), mutagenic, antitumour (Talacki et al., 1974) and anti-amoebic (Prasad Krishna et al., 1984). Acridines bind to DNA by intercalation (Lerman, 1961; Karle et al., 1980; Nandi et al., 1990; Reddy et al., 1979; Sakore et al., 1979). The use of decahydroacridine1,8 -diones as photo-sensitizers is also well known (Timpe et al., 1993). Acridinediones act as laser dyes whose laser activity has been studied (Murugan et al., 1998). In acridine-1,8-diones, the electron delocalization is along a stretch of nine non-H atoms, facilitating fluorescence and laser activity (Selladurai et al., 1990). The derivatives of acridine are buckled and this buckling was a factor in considering their biological properties (Glusker et al., 1972). The effectiveness of lasing can be controlled by the substituents at the 9 - and 10 -positions of the acridine chromophore. The present study of the title compound, (I), is a part of a series of investigations on the crystal structures of acridinedione derivatives (Jeyakanthan et al., 2000).

(I)

The bond distances of $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{OH}$ are in good agreement with values observed in related structures (Allen et al., 1987; Ganesh et al., 1998; Jeyakanthan et al., 2000). The bond lengths in the dihydropyridine ring range from 1.352 (3) to 1.501 (3) \AA and show the alternating single- and doublebond character, as observed in related acridine structures (Selladurai et al., 1990; Sivaraman et al., 1994). The dihedral angle between the two outer rings, A and C, is $13.05(8)^{\circ}$, demonstrating the buckling of the acridine nucleus. The acridine moiety is folded about the line passing through atoms C2 and N . The dihedral angle between the two halves of ring B, i.e. $\mathrm{C} 2-\mathrm{C} 8 / \mathrm{N}$ and $\mathrm{C} 2 / \mathrm{C} 17-\mathrm{C} 22 / \mathrm{N}$, is $15.21(5)^{\circ}$.

Received 1 October 2002

 Accepted 25 October 2002 Online 8 November 2002

Figure 1
View of (I), shown with 30% probability displacement ellipsoids.

The sum of the angles around N is $359.6(2)^{\circ}$, a clear indication of $s p^{2}$ hybridization. The bond lengths involving atom N conform to standard $\mathrm{Csp}{ }^{2}-\mathrm{N} s p^{2}$ bonds. The puckering amplitude of the central pyridine ring is small, owing to the π-conjugation along $\mathrm{C} 3-\mathrm{C} 8-\mathrm{N}-\mathrm{C} 17-\mathrm{C} 22$, as indicated by the distances $\mathrm{C} 3-\mathrm{C} 8, \mathrm{C} 8-\mathrm{N}, \mathrm{N}-\mathrm{C} 17$ and $\mathrm{C} 17-\mathrm{C} 22$ (Table $1)$. The planar phenyl ring is orthogonal to the dihydropyridine ring, the dihedral angle between them being 39.85 (8) ${ }^{\circ}$.

The deviations of atoms O 1 and O 2 from the mean planes through rings C and A are 0.0585 (2) and -0.1894 (2) \AA, respectively. The $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 23$ and $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 24$ torsion angles show that methyl atoms C23 and C24 are axial and equatorial, respectively, to ring C. The $\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19-$ C 26 and $\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 25$ torsion angles show that methyl atoms C26 and C25 are axial and equatorial, respectively, to ring A.

The total puckering amplitudes (Cremer \& Pople, 1975) of rings A, B and C give a quantitative evaluation of puckering and asymmetry parameters. The asymmetry parameters (Nardelli, 1995) are $Q_{T}=0.5066$ (5) \AA and $\Delta C_{2}(\mathrm{C} 17-\mathrm{C} 22)=$ $0.0365(1)^{\circ}$, i.e. a sofa conformation for ring $A ; Q_{T}=$ $0.2746(3) \AA, \Delta \mathrm{C}_{2}(\mathrm{C} 2-\mathrm{C} 22)=0.0590(4)^{\circ}$ and $\Delta C_{S}(\mathrm{C} 2)=$ $0.0216(2)^{\circ}$ for ring B, i.e. a boat conformation; $Q_{T}=$ $0.4707(9) \AA$ and $\Delta C_{S}(\mathrm{C} 3)=0.0233(4)^{\circ}$ for ring C, i.e. a sofa conformation. In addition to van der Waals interactions, the packing in the crystal is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

A solution of $2,2^{\prime}$-ethylenebis(dimedone) $(1.5 \mathrm{~g}, 0.0049 \mathrm{~mol})$ in acetic acid was refluxed for 13 h . The reaction mixture was poured on to ice, and the resulting brown solid was filtered off, dried and recrystallized from a mixture of chloroform and methanol (1:1) to afford the title compound ($1.2 \mathrm{~g}, 60.3 \%$ yield)

Crystal data
$\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{3}$
$M_{r}=407.53$
Monoclinic, $P 2_{d} / n$
$a=11.350$ (2) A
$b=15.5152(15) \AA$
$c=13.084$ (2) A
$\beta=104.677$ (14) ${ }^{\circ}$
$V=2228.9(6) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction: none
4093 measured reflections
3914 independent reflections
2417 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.180$
$S=1.01$
3914 reflections
278 parameters
H -atom parameters constrained
$D_{x}=1.214 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.1-25.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, orange
$0.30 \times 0.30 \times 0.25 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=0 \rightarrow 18 \\
& l=0 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: }<2 \%
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N}-\mathrm{C} 8$	$1.393(3)$	$\mathrm{O} 2-\mathrm{C} 21$	$1.225(3)$
$\mathrm{N}-\mathrm{C} 17$	$1.399(3)$	$\mathrm{O} 3-\mathrm{C} 14$	$1.372(3)$
$\mathrm{N}-\mathrm{C} 9$	$1.478(3)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.352(3)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.237(3)$	$\mathrm{C} 17-\mathrm{C} 22$	$1.362(3)$
$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 17$	$119.3(2)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$120.6(2)$
$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 9$	$119.2(2)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{N}$	$120.8(2)$
$\mathrm{C} 17-\mathrm{N}-\mathrm{C} 9$	$121.1(2)$	$\mathrm{N}-\mathrm{C} 8-\mathrm{C} 7$	$118.5(2)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$119.7(2)$	$\mathrm{N}-\mathrm{C} 9-\mathrm{C} 10$	$113.2(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 23$	$-70.7(3)$	$\mathrm{C} 26-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$63.9(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 24$	$168.4(2)$	$\mathrm{C} 25-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$-175.6(2)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{-}-\mathrm{H} 3 \cdots \mathrm{O1}^{\mathrm{i}}$	0.82	1.89	$2.681(3)$	161

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were fixed geometrically and allowed to ride on their attached non- H atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$. The torsion angles about $\mathrm{C}-\mathrm{CH}_{3}$ and $\mathrm{C}-\mathrm{OH}$ bonds were refined with a rotating-group model.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

References

Acheson, R. M. (1956). Acridines, 1st ed. London: Amold.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ganesh, V. K., Banumathi, S., Velmurugan, D., Ramasubbu, N. \& Ramakrishnan, V. T. (1998). Acta Cryst. C54, 633-635.
Glusker, J. P., Berman, H. M. \& Carrel, H. L. (1972). Acta Cryst. A28, S-44.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Jeyakanthan, J., Shanmuga Sundara Raj, S., Velmurugan, D., Fun, H.-K., Rajan, T. J. \& Ramakrishnan, V. T. (2000). Acta Cryst. C56, 1109-1112.
Karle, J. M., Cysyk, R. V. \& Karle, I. L. (1980). Acta Cryst. B36, 3012-3016.
Lerman, L. S. J. (1961). Mol. Biol. 3, 18-30.

Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. \& Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.

Nandi, R., Debnath, D. \& Maiti, M. (1990). Biochem. Biophys. Acta, 104, 339342.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Prasad Krishna, B. N., Bansal, I., Das, P. \& Srivatsava, R. (1984). Curr. Sci. 53, 778-780.
Reddy, B. S., Seshadri, T. P., Sakore, T. D. \& Sobell, H. M. (1979). J. Mol. Biol. 135, 787-812.
Sakore, T. D., Reddy, B. S. \& Sobell, H. M. (1979). J. Mol. Biol. 135, 763-785.
Selladurai, S., Subramanian, K. \& Ramakrishnan, V. T. (1990). J. Crystallogr. Spectrosc. Res. 20, 227-232.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. \& Ramakrishnan, V. T. (1994). Acta Cryst. C50, 2011-2013.
Talacki, R., Carrel, H. L. \& Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.
Timpe, H. J., Ulrich, S., Decker, C. \& Fouassier, J. P. (1993). Macromolecules, 26, 4560-4566.

